Иллюстрированный самоучитель по введению в экспертные системы


Стратегии приобретения знаний - часть 2


Если такие промежуточные события не фиксируются в процессе диагностирования, то это может служить более серьезным доводом против данной гипотезы, чем отсутствие симптома.

  • Дифференциация путей. Как и в случае разделения пути, анализируется "траектория" причинно-следственных связей между симптомами и неисправностями. В процессе этого анализа стараются выявить такие промежуточные события, которые позволят провести разделение неисправностей, имеющих одинаковые симптомы.

  • Дифференциация тестирования. Определение степени доверия к результатам тестирования. Свидетельство, как правило, является результатом тестирования, а последнее может быть охарактеризовано различными значениями степени достоверности.

  • Установление связи между тестированием и условиями его проведения. Определение фоновых условий, которые могут сказаться на степени достоверности результатов тестирования. Такая информация влияет на оценку результатов текущих наблюдений для анализируемого случая.

  • Извлечение знаний с помощью программы MORE начинается с получения от эксперта знаний о базовых неисправностях (патологиях) и связанных с ними симптомах. Затем программа избирательно активизирует указанные выше стратегии приобретения знаний, базируясь на тех знаниях, которые приобретены на предыдущих стадиях. Чтобы понять механизм выбора стратегий, рассмотрим процесс приобретения знаний с помощью MORE более подробно.

    В той предметной области, на которую ориентирована программа MORE, существуют три типа порождающих правил.

    • Диагностические правила описывают соответствие между симптомами и гипотезами. Правила такого типа имеются во многих экспертных системах — MYCIN, ONCOCIN, MUD и т.п.

    • Правила оценки степени достоверности симптомов. С помощью этих правил выполняется неявная качественная оценка абстрактных категорий данных в пространстве симптомов, которая опирается на уровень достоверности результатов тестирования при различных фоновых условиях.

    • Правила оценки степени правдоподобности гипотез позволяют провести неявную качественную оценку абстрактных категорий решений в пространстве гипотез.


      - Начало -  - Назад -  - Вперед -